

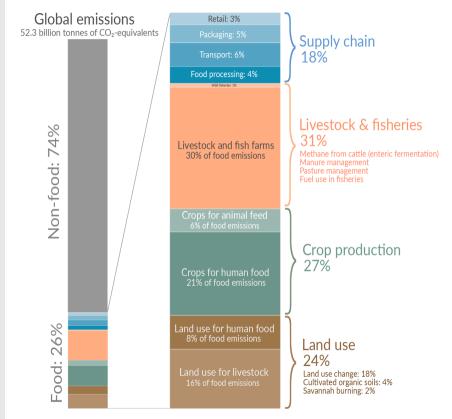
Outline

- 1. Setting the Stage: Global food, livestock, and dairy systems emissions & targets
- 2. It's not the **Cow**, it's the **How**: Greenhouse gas (GHG) emissions mitigation opportunities in the Slovak dairy sector
- 3. Policy & Partnerships: Leveraging public-private partnerships to achieve sustainable dairy production
- 4. Feeding & Educating the Next Generation for a Sustainable Future

Global livestock, and dairy systems GHG emissions

Slovakia Greenhouse Gas (GHG) Emissions Targets

- Commitment to carbon neutrality by 2050
- Goal to reduce GHG emissions by 20% by 2030 (Greener Slovakia)
- Average per capita GHG emissions < EU average
- Decoupling of GHG emissions and economic performance
- Agriculture accounted for only 7% of Slovakian GHG emissions in 2019
 - Agricultural emissions: 76.3% of methane and 90% of nitrous oxide



Global Food System GHG Emissions

- Breakdown of emissions from food production
- Greenhouse gases: CO₂, CH₄, NO₂
- Not all gases behave the same!
- 14% of global GHG emissions attributed to animal agriculture
- Focus on methane

Global greenhouse gas emissions from food production

Data source: Joseph Poore & Thomas Nemecek (2018). Reducing food's environmental impacts through producers and consumers. Published in Science.

Licensed under CC-BY by the author Hannah Ritchie (Nov 2022).

Methane (CH₄) v. Carbon Dioxide (CO₂)

Methane

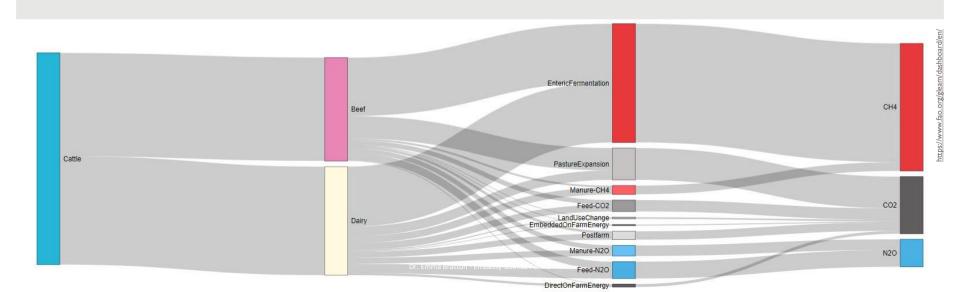
- Short atmospheric lifespan
- ~17% of global GHG emissions from human activities
- GWP100: 28-36
- Main sources of emissions:
 - Animal agriculture
 - Fracking & transportation
 - Landfills

Carbon Dioxide

- Long atmospheric lifespan
- ~76% of global GHG emissions
- GWP100: I
- Main sources of emissions:
 - Electricity & heat
 - Transportation
 - Manufacturing & construction

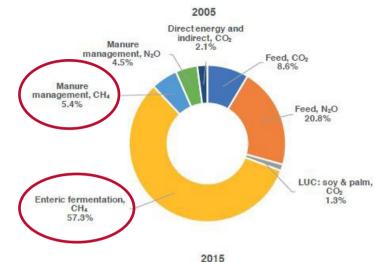
Methane Emissions Targets – Global Methane Pledge

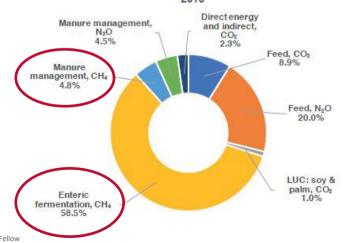
- Voluntary commitment by >150 partner countries, including Slovakia
- Potential to avoid >0.2°C of warming by 2050


Commitments:

- Reduce methane emissions from all sectors by at least 30% below 2020 levels by 2030
- Abatement of agricultural emissions via technology & innovation
- Policy transparency & annual reporting
- Highest tier IPCC good practice inventory methodologies
- Support existing international methane emissions reduction initiatives

Global Dairy Methane Emissions – GLEAM Data

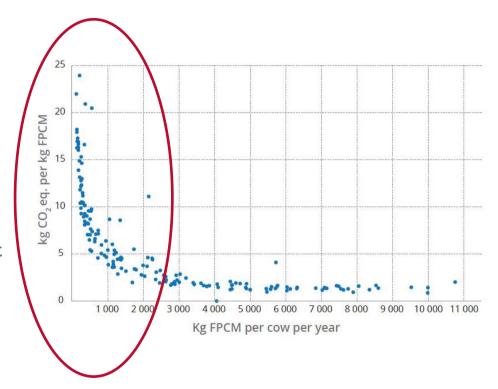

- Total global dairy cattle methane emissions 1,246.746 Million tonnes CO₂eq
- Methane missions from enteric fermentation 1,088.310 M tCO₂eq
- Methane emissions from manure I58.436 M tCO₂eq



Global Dairy Emissions – FAO Data

- Proportion of methane emissions is large & rising (62.7% to 63.3%)
- Proportion from enteric fermentation is large & rising (57.3% to 58.5%)
- Reducing methane emissions from enteric fermentation is key to dairy sector GHG emissions mitigation

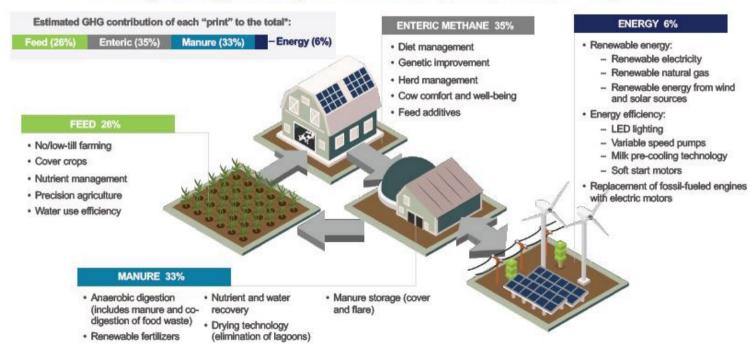
It's not the **Cow**, it's the **How**: GHG emissions mitigation opportunities in the Slovak dairy sector


Slovakian Dairy Sector – On Farm

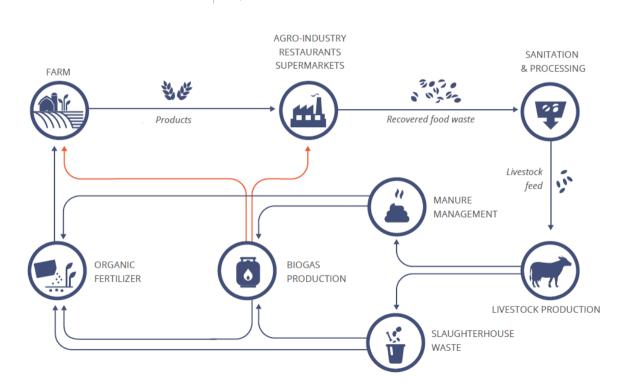
- Farm size & type
- Dairy production & trends
 - Milk yield
 - Age at first calving (AFC)
 - Productive lifespan

GHG Emissions Intensity

- Kg CO₂ eq / unit of food produced
- Decreased intensity with increased efficiency
- Mitigation potential for systems that produce <2000 kg FPCM/year
- Evidence-based targeting & managing trade-offs


"Triple-Win" Scenario

- Economic growth
- Methane emissions reduction
- Improved nutrition



Mitigating Dairy's Environmental Footprint

Circular Bioeconomy

Dairy Methane Emissions Mitigation Principles

- 1. Increasing dairy production efficiency to decrease methane emissions intensity
- 2. Altering manure management systems
- 3. Increasing circularity & carbon sinks

Strategies for Decreased Dairy Methane Emissions

Animal production efficiency

- 1. Optimize diet formulations
- 2. Optimize breeding systems
- Improve information and technology integration & spread
- 4. Set up or integrate market systems
- Improve animal health and biosecurity

Strategies for Decreased Dairy Methane Emissions

Manure management

- I. Anaerobic digestion
- 2. Composting

Strategies for Decreased Dairy Methane Emissions

Circular Bioeconomy & Carbon Sinks

- I. Grazing management
- 2. Integrated crop-livestock systems
- 3. Agroforestry & silvopastoral systems
- 4. Minimizing on-farm & off-farm losses

Optimized Diet Formulations – GFARP

- Global Farm Animals Ration
 Programs Vietnam
- Locally-relevant and easily accessible information
- Economically & environmentally efficient
- Feed additives, e.g. Bovaer

Optimized Breeding Systems

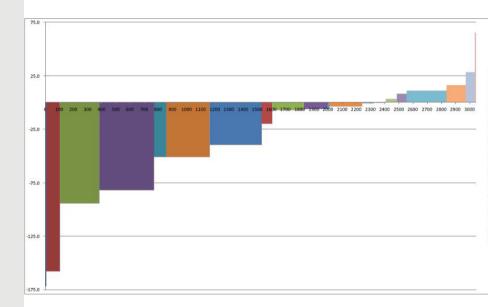
- Calving interval
- Estrus detection
- Artificial insemination (Al)
- Embryo transfer (ET)

Category	Species	Relative effectiveness	Input required to achieve desired effect
Genomic selection for fertility	All ruminants and swine	Medium	High
Artificial insemination	All ruminants and swine	High	Moderate or high
Hormonal synchronization	All ruminants and swine	Medium	High
Embryo transfer	All ruminants and swine	High	High

Improved Technology & Information Integration - DigiCow Dairy

- Heifer International
- Trainings & community knowledge
- Animal husbandry
- Veterinary services

Integrated Market Systems – KCDMS Activity


- Began in 2017
- Market linkages, improved breeding & animal health, extension services, better input access
- Interventions
- Results:
 - Productivity increased by an average of 43%
 - Methane emissions intensity decreased by an average of 27%

Improved Animal Health & Biosecurity

- Life Cycle Analyses (LCA)
- Marginal Abatement Cost Curves (MACC)
- Low cost, high reward

Animal Health, Welfare, and Sustainability

- EU Farm to Fork, UN, World Organization for Animal Health (OIE)
- Freedom from pain injury, and disease
- Animal welfare indicators included in sustainability assessments
- Sustainable intensification tradeoffs
 & mitigation strategies

Anaerobic Digestion – Chase Goodrich

- Dairy Farm in Vermont, USA
- ~5 M liter anaerobic digester
- Local community connection
- Overhead: digester staff & costs

Manure Composting – Suzanne Vold

- Dairy Farm in Minnesota, USA
- Daritech "Bedding Master" compost drum
- Converts cow manure into bacteria-free dry bedding in 24 hours

Grazing Management – UNH ODRF

- Organic Dairy Research Farm—University of New Hampshire, USA
- 79 Jersey cows on 40 hectares of certified organic pasture
- MIG grazing can increase soil carbon by 3.2 g/kg
- Initial soil carbon content matters!

Integrated Crop-Livestock Systems – University of Wisconsin, USA

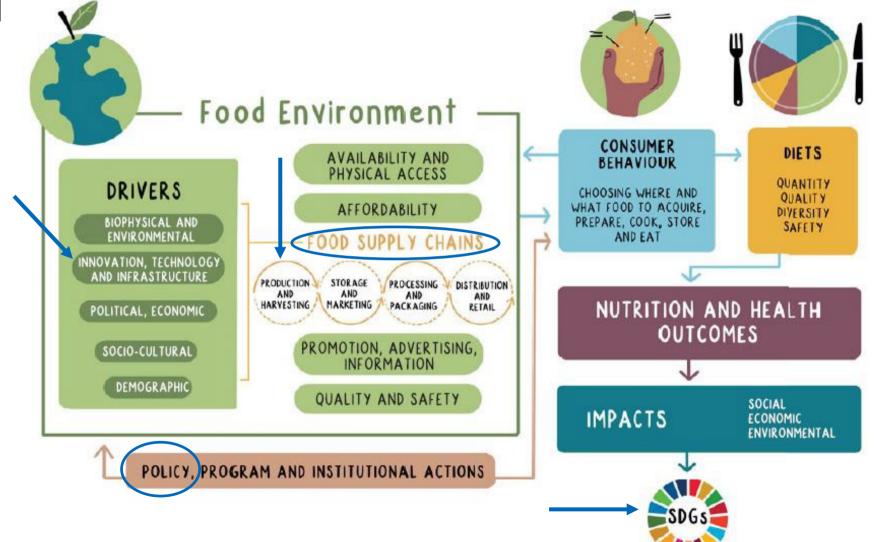
- Dairy Forage Research Center (DFRC) – University of WI, Madison, USA
- 400 dairy cows
- Forest, shrubs, forage crops, pasture, grass
- Nearly neg. 20 M kg CO₂ eq net
 GHG emissions
- Alfalfa is key!
- Sustainable agroecological system

Agroforestry Systems – Tim Downes

- Significant soil carbon sequestration
- Native trees improve animal & soil health
- Adequate precipitation I m/year

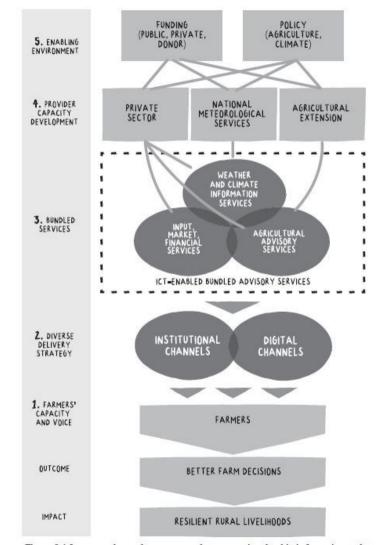
Minimizing Food Loss & Waste – Bangladesh LAN Activity

- Feed the Future Bangladesh
 Livestock & Nutrition Activity
- USAID & ACDI/VOCA
- Byproducts → commodities
- Sanitation & storage
- Labeling & bioprotective cultures



Summary – Dairy Methane Mitigation Strategies

- Decreasing methane emissions intensity and capturing methane emissions
- Increasing on-farm productivity & strengthening market linkages
- Manure storage, processing and biogas generation
- Capturing carbon via grazing, agroforestry, and integrated crop-livestock systems



Public-Private Partnerships to Achieve Sustainable Dairy Production

Climate Finance

- Leveraging multiple funding sources—domestic & international
- Bundling financial instruments
- Incentives & disincentives
- Carbon/methane markets
- Public-private partnerships

Climate Finance – Funding Sources & Instruments

Sources

- Multilateral
 - Green Climate Fund
 - World Bank
 - Global Environment Facility
- Domestic
 - "Climate Fund for Soil"
 - National banks

Instruments

- Carbon markets
 - EU Emissions Trading System (ETS)
- Carbon/methane tax
- Subsidies
- Loans

Partnerships for Climate-Smart Commodities

- \$3.125 billion in 141 projects
- Project approaches (broad):
 - Technical & financial assistance
 - GHG data collection
 - Market development
- Anticipated results:
 - >60K farmers & >10 Mhectares of land
 - Nearly 100 universities
- Dairy Farmers of America (DFA) dairy methane project

∃ ______

USAID Climate Strategy 2022-2030 Strategic Framework

SO I. TARGETED DIRECT ACTION

Accelerate and scale targeted climate actions

SO 2. SYSTEMS CHANGE

Catalyze transformative shifts to net-zero and climate-resilient pathways

IR I.I Reduce Emissions

Catalyze urgent mitigation (emissions reductions and sequestration) from energy, land use, and other key sources

IR 1.2 Build Resilience

Strengthen resilience of populations vulnerable to climate impacts (adaptation)

IR 1.3 Mobilize Finance

Increase the flow of and equitable access to finance to support adaptation and mitigation

IR I.4 Partner with IPLCs

Partner with Indigenous Peoples and local communities to lead climate actions

IR 1.5 Amplify Crucial Voices

Enable and empower women and youth and other marginalized and/or underrepresented groups to lead climate action

Embedded Principles

Locally Led Development

Equity and Inclusion

Private-Sector Engagement

Nature-Based Solutions

Evidence and Innovation

IR 2.1 Transform Key Systems Advance transformation of key syst

Advance transformation of key systems and essential services to reduce emissions and enhance climate resilience

IR 2.2 Shift Market Signals

Support a transition to resilient, net-zero economies and financial systems

IR 2.3 Improve Governance

Strengthen responsive, transparent governance and citizen engagement for effective climate action

IR 2.4 Work Across Assistance Types

Strengthen the coordination of humanitarian, development, and peacebuilding assistance to address climate impacts

SpO 3. DO OUR PART

Strengthen the operations and approaches to programming to address climate change and further climate justice within USAID and our partner organizations

EU Farm to Fork Policy

Key Principles

- Healthy, affordable, sustainable food
- Tackle climate change
- Protect the environment & preserve biodiversity
- Fair economic return in the food chain
- Increase organic farming

Quantitative Goals - by 2030

- Reduce the use of pesticides by 50%
- Reduce soil nutrient losses by at least 50%
- Reduce fertilizer use by 20%
- Reduce sale of antimicrobials for farmed animals by 50%
- 25% of total farmland is organic
- Reduce per capita food waste by 50%

Greener Slovakia Strategy – Principles

Principles

- Natural resource management
- Climate change mitigation & adaptation and air quality protection
- Green/circular economy

Keys to Success

- The importance of data
- Leveraging public & private funds
- Multistakeholder cooperation

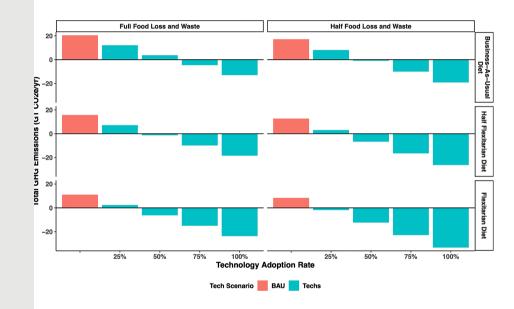
Slovakian Agricultural Efficiency Opportunities

- Agricultural production diversity improves technical efficiency
- Optimize CAP subsidies to improve technical efficiency & decrease admin burden
- Increase farmer association membership to improve livestock production efficiency

Slovakian Dairy Sector Challenges & Opportunities

Challenges

- Production efficiency
- Shrinking & aging workforce
- Lack of optimization of AKIS
- Ambitious climate targets
- Lack of coordination among stakeholders
- Lack of integration w/EU research infrastructure


Opportunities

- Improved production efficiency small and large farms
- Improved coordination of research & technology development & uptake—
 Slovakia & EU
- Optimizing existing knowledge systems (AKIS)
- Enabling environment to support climate-smart agricultural technology

Improved Technology & Information Integration

- Climate-smart agricultural technology has revolutionary potential
- Manure digestion 79%
- Agroforestry 26.42 tonnes
 CO₂/ha
- Digestible forage 35%
- Feed additives 46%
- Scalability & cost

Mapping Research Priorities

- Direct funding & policy action with specific financial & time-based goals
- Five action steps for policymakers
- Leveraging existing policy & funding mechanisms

Minimize atmospheric Minimize methane emissions > methane levels to Solutions discovered, and Full global deployment of solutions Aggressive R&D and minimize peak warming being commercialized capacity-building investment that reduce methane by 90%+ and deployed globally **2050 GOAL** to develop and test solutions 2040 2030 2023 WORKING Atmospheric lifetime of BACKWARDS methane is about a decade Solutions will take Research timelines are at least a decade to uncertain, and must start now commercialize, scale, and be fully adopted

The Importance of Data

Dr. Emma Bratton - Embassy Science Fellow

Measurement – Cool Farm Tool

- GHG emissions, water use, and biodiversity
- Quantitative, credible, and standardized metrics
- Connects management decisions to environmental effects
- Creates "what-if" scenarios and simulates GHG emissions effects
- Adopted and tested by multinational companies, e.g. Bel group
- Water—70% fresh water used by agriculture globally
 - Minimal data entry, maximum output
- Biodiversity—quantitative score that builds over time
 - Wide array of species and management practices included

Dairy Sustainability Framework (DSF)

- Continuous sustainability improvement of the global dairy sector
- I I environmental, social, and economic sustainability criteria
- Benefits of high-level indicators
- Benefits of DSF membership

48

US Dairy Net Zero Initiative

- Goal: US Dairy achieves GHG emissions neutrality by 2050
- Informed by & designed for US dairy producers
- Private sector-led

Partners and Collaborators

US Dairy Net Zero Initiative

Research, Analysis & Modeling

- Fill data gaps, generate knowledge, improve models,
- Improved understanding of technologies & practices
- Improve on-farm tools

On-Farm Pilots

- Implementing best practices
- Market-based approaches
- Provide scale

Scale Adoption

- Broad, voluntary farmer adoption
- Sharing positive impacts to improve learning
- Supply chain demonstration projects
- Increase awareness

Summary: Operationalizing this in Slovakia

- Mobilizing climate funds
- Public-private partnerships
- Multisectoral policy framework
- Technology & information dissemination
- Mapping research priorities
- The importance of data
- US DNZ pulling it all together

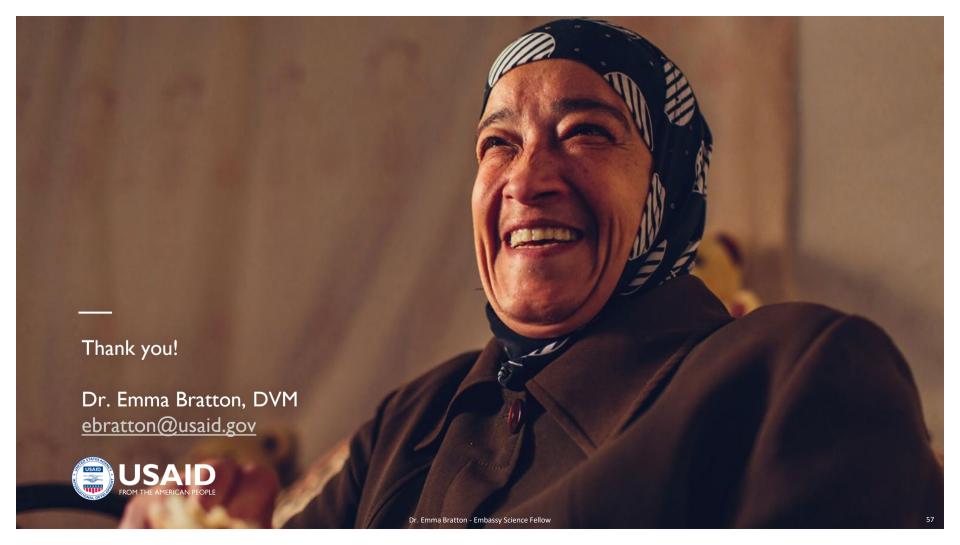
Feeding & Educating the Next Generation for a Sustainable Future

Vision for the Future – Dairy Farmers

- Integrating information on novel farming technologies and approaches
- Increased political engagement
- Circular bioeconomy
- Increased market linkages

Vision for the Future – Dairy Industry Stakeholders

- Capitalizing on climate incentives
- Food systems perspective
- Balancing policy and consumer pressures


Vision for the Future – Veterinary & Agricultural Science

- "Whole farm" approach to animal science
- One Health/One Welfare approach
- Environmental and economic consulting

Vision for the Future – Agricultural Policymakers

- Mobilizing climate funds
- Creating a sustainable dairy production enabling environment
- Leveraging private sector partnerships
- Supporting robust data collection & information dissemination

- 1. ADAS UK Ltd. (2015). (rep.). Study to Model the Impact of Controlling Endemic Cattle Diseases and Conditions on National Cattle Productivity, Agricultural Performance and Greenhouse Gas Emissions. Defra / Animal Health & Veterinary Laboratories Agency.
- 2. Almaraz, Maya; Houlton, Benjamin Z.; Clark, Michael; Holzer, Iris; Zhou, Yanqiu; Rasmussen, Laura; et al. (2023). Model-based scenarios for achieving net negative emissions in the food system. *PLOS Climate*. Collection. https://doi.org/10.1371/journal.pclm.0000181
- 3. Archer SC, Hudson CD, Green MJ (2015) Use of Stochastic Simulation to Evaluate the Reduction in Methane Emissions and Improvement in Reproductive Efficiency from Routine Hormonal Interventions in Dairy Herds. *PLoS ONE* 10(6): e0127846. https://doi.org/10.1371/journal.pone.0127846
- 4. Arndt, K. A., Campbell, E. E., Dorich, C. D., Grandy, A. S., Griffin, T. S., Ingraham, P., ... & Contosta, A. R. (2022). Initial soil conditions outweigh management in a cool-season dairy farm's carbon sequestration potential. *Science of the Total Environment*, 809, 152195.
- 5. Askew, K. (2022, July 8). From date labels to packaging innovation and bioactive cultures: IFF discusses the complex topic of tackling food waste in dairy. foodnavigator.com. https://www.foodnavigator.com/Article/2022/07/08/IFF-discusses-tackling-food-waste-in-dairy#
- 6. Buller, H., Blokhuis, H., Jensen, P., & Keeling, L. (2018). Towards farm animal welfare and sustainability. *Animals*, 8(6), 81.

- 7. Brown, D. R., & Brooke, C. (2023, August 13). Climate-smart cattle: US research and development will improve animal productivity, address greenhouse gases, and hasten additional market solutions. Federation of American Scientists. https://fas.org/publication/climate-smart-cattle/
- 8. Campbell, B. M., Thornton, P., Loboguerrero, A. M., Dinesh, D., & Nowak, A. (2023). *Transforming food systems under climate change through innovation.* Cambridge University Press.
- 9. CEIC Data. (2021). Slovakia Agricultural Production: Livestock. CEIC. https://www.ceicdata.com/en/slovakia/agricultural-production-livestock/
- Climate and Clean Air Coalition. (2021). Homepage: Global Methane Pledge. Homepage | Global Methane Pledge. https://www.globalmethanepledge.org/
- 11. The Cool Farm Alliance. (2023). *Cool Farm Tool: An online greenhouse gas water and biodiversity calculator.*Cool Farm Tool. https://coolfarm.org/
- 12. Dairy Sustainability Framework. (2019). (rep.). *Dairy Sustainability Framework 2020-2025 Strategic Plan*. Retrieved September 20, 2023, from https://www.dairysustainabilityframework.org/wp-content/uploads/2022/06/DSF-Strategic-Plan-2020-2025.pdf.
- 13. DSF. (2023, May 11). *Dairy Sustainability Framework | Home*. Dairy Sustainability Framework. https://www.dairysustainabilityframework.org/
- 14. Costa Jr, C., Wollenberg, E., Benitez, M., Newman, R., Gardner, N., & Bellone, F. (2022). Roadmap for achieving net-zero emissions in global food systems by 2050. *Scientific reports*, 12(1), 15064.

- 15. Dallago GM, Wade KM, Cue RI, McClure JT, Lacroix R, Pellerin D, Vasseur E. Keeping Dairy Cows for Longer: A Critical Literature Review on Dairy Cow Longevity in High Milk-Producing Countries. *Animals* (Basel). 2021 Mar 13;11(3):808. doi: 10.3390/ani11030808. Erratum in: *Animals* (Basel). 2021 Oct 14;11(10): PMID: 33805738; PMCID: PMC7999272.
- 16. De Vries, A., & Marcondes, M. I. (2020). Overview of factors affecting productive lifespan of dairy cows. *Animal*, 14(S1), s155-s164.
- 17. Diavão, J., Silva, A. S., Sguizzato, A. L. L., Silva, C. S. D., Tomich, T. R., & Pereira, L. G. R. (2023). How does reproduction account for dairy farm sustainability?. *Animal Reproduction*, 20, e20230066.
- 18. dsm-firmenich. (2023, May 22). *Bel makes milk low-methane, working across its entire Slovakian dairy chain with partner dsm-firmenich.* @dsmFirmenich-corporate. https://www.dsm-firmenich.com/corporate/news/press-releases/2023/bel-is-rolling-out-bovaer-across-slovakian-dairy-chain.html
- 19. Erbach, G. (2021). Climate action in Slovakia (PE 698.767). European Parliamentary Research Service.
- 20. European Commission. (2020). A farm to fork strategy for a fair, healthy and environmentally-friendly food system. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381
- 21. FAO. (2013). (rep.). Food wastage footprint impacts on natural resources: Summary report.
- 22. FAO. 2019. Five practical actions towards low-carbon livestock. Rome
- 23. FAO. (2023). *Dashboard | Global Livestock Environmental Assessment Model (GLEAM)* | Food and Agriculture Organization of the United Nations. https://www.fao.org/gleam/dashboard/en/

- 24. FAO and GDP. 2018. Climate change and the global dairy cattle sector The role of the dairy sector in a lowcarbon future. Rome. 36 pp. License: CC BY-NC-SA- 3.0 IGO
- 25. Farm Animal Welfare Committee. (2016). (rep.). Sustainable agriculture and farm animal welfare. Farm Animal Welfare Committee. Retrieved September 19, 2023, from http://www.gov.uk/government/collections/fawc-adviceto-government
- 26. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. 2013. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.
- 27. Hannah Ritchie (2019) "Food production is responsible for one-quarter of the world's greenhouse gas emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/food-ghgemissions' [Online Resource]
- 28. Hawkins, I., Yesuf, G., Zijlstra, M., Schoneveld, G. C., & Rufino, M. C. (2021). Feeding efficiency gains can increase the greenhouse gas mitigation potential of the Tanzanian dairy sector. Scientific reports, 11(1), 4190.
- Holstein Association USA, Inc. (2023). Holstein 101: A Beginner's Guide to Holstein Cattle. Holstein 101. https://www.holsteinusa.com/holstein breed/holstein101.html#:~:text=Holstein%20cows%20give%20more%20milk ,gallons%2C%20of%20milk%20each%20lactation
- Kebreab, E., Ahmadi, A., & Corner-Dolloff, C. (2019, November 25). Ration Formulation Software Enhances Farmer Productivity, Decreases Emission Intensity and Trains Nutritionists in Vietnam. Agrilinks. https://agrilinks.org/post/ration-formulation-software-enhances-farmer-productivity-decreases-emission-intensityand Dr. Emma Bratton - Embassy Science Fellow

- 31. Khatri-Chhetri, A., Sapkota, T. B., Sander, B. O., Arango, J., Nelson, K. M., & Wilkes, A. (2021). Financing climate change mitigation in agriculture: assessment of investment cases. *Environmental Research Letters*, 16(12), 124044.
- 32. Knight, A. (2021, April 21). *How Heifer Prevents Zoonotic Diseases, Improves Animal Well-Being.* Heifer International. https://www.heifer.org/blog/how-heifer-prevents-zoonotic-diseases-improves-animal-well-being.html
- 33. Lazíková J, Lazíková Z, Takáč I, Rumanovská Ľ, Bandlerová A. Technical Efficiency in the Agricultural Business— The Case of Slovakia. *Sustainability*. 2019; 11(20):5589. https://doi.org/10.3390/su11205589
- 34. Ministry of Environment of the Slovak Republic. (2020). *Greener Slovakia—Strategy of the environmental policy of the Slovak Republic until 2030*. http://www.minzp.sk/iep/strategicke-materialy/envirostrategia-2030/
- 35. Muscat, A., de Olde, E.M., Ripoll-Bosch, R. *et al.* Principles, drivers and opportunities of a circular bioeconomy. *Nat Food* 2, 561–566 (2021). https://doi.org/10.1038/s43016-021-00340-7
- 36. National Milk Producers Federation. (2022, July 29). *Dairy Industry Sustainability Initiatives: NMPF Environmental Stewardship*. NMPF. https://www.nmpf.org/issues/sustainability/climate-policy/
- 37. Peterson CB and Mitloehner FM (2021) Sustainability of the Dairy Industry: Emissions and Mitigation Opportunities. *Front. Anim. Sci.* 2:760310. doi: 10.3389/fanim.2021.760310
- 38. Smith, J., & Darawali, S. (2022, November 14). *ILRI's Jimmy Smith on bringing science-based nuance and clarity to today's polarized livestock debates.* ILRI | CGIAR. https://www.ilri.org/news/ilris-jimmy-smith-bringing-science-based-nuance-and-clarity-todays-polarized-livestock-debates
- 39. Tan, Zhibo. (2022). Climate mitigation in Slovakia: targets, policies, and challenges. International Monetary Fund.

- 40. Thorbecke, M., & Dettling, J. (2019). (rep.). *Carbon Footprint Evaluation of Regenerative Grazing at White Oak Pastures*. Quantis. Retrieved September 19, 2023, from https://blog.whiteoakpastures.com/hubfs/WOP-LCA-Quantis-2019.pdf.
- 41. U.S. Department of State & European Union. (2022, November 17). Global Methane Pledge: From Moment to Momentum United States Department of State. U.S. Department of State. https://www.state.gov/global-methane-pledge-from-moment-to-momentum/
- 42. U.S. Environmental Protection Agency. (2022, December 15). Practices to Reduce Methane Emissions from Livestock Manure Management ... EPA.gov. https://www.epa.gov/agstar/practices-reduce-methane-emissions-livestock-manure-management
- 43. UC Davis. (n.d.). *Global Farm Animals Ration Programs (GlobalFARP)*. GEO Software Global Engagement Office: Software Design, Development, Support and Distribution. https://geosoftware.faculty.ucdavis.edu/
- 44. United Nations Food and Agricultural Organization. (2023). *Livestock and enteric methane*. FAO. https://www.fao.org/in-action/enteric-methane/en/
- 45. USAID. (2022). *USAID climate strategy 2022-2030.* https://www.usaid.gov/sites/default/files/2022-11/USAID-Climate-Strategy-2022-2030.pdf
- 46. United States Department of Agriculture. (n.d.). *Partnerships for climate-smart commodities.* USDA. https://www.usda.gov/climate-solutions/climate-smart-commodities

- 47. USAID, RuMeth, & RTI International. (2022). (rep.). *METHANE REDUCTIONS AND DAIRY How can smallholder farmers increase production while reducing their methane footprint?* USAID. Retrieved September 19, 2023, from https://www.usaid.gov/sites/default/files/2023-03/Methane%20Reductions%20and%20Dairy%202%20pager.pdf.
- 48. USDairy.com. (August 2022). U.S. Dairy Net Zero Initiative.
- 49. von Soosten D, Meyer U, Flachowsky G, Dänicke S. Dairy Cow Health and Greenhouse Gas Emission Intensity. *Dairy*. 2020; 1(1):20-29. https://doi.org/10.3390/dairy1010003
- 50. van Zanten, H.H.E., Simon, W., van Selm, B. et al. Circularity in Europe strengthens the sustainability of the global food system. *Nat Food* 4, 320–330 (2023). https://doi.org/10.1038/s43016-023-00734-9
- 51. Wiesner, S., Duff, A. J., Desai, A. R., & Panke-Buisse, K. (2020). Increasing dairy sustainability with integrated crop—livestock farming. *Sustainability*, 12(3), 765.
- 52. World Bank Group. (2022, February 22). *Moving Towards Sustainability: The Livestock Sector and the World Bank.* World Bank. https://www.worldbank.org/en/topic/agriculture/brief/moving-towards-sustainability-the-livestock-sector-and-the-world-bank
- 53. Yost, C. (2022, December 13). *Have Your Cows Repaid their Debts?*. Penn State Extension. https://extension.psu.edu/have-your-cows-repaid-their-debts
- 54. Zahradnik, M. (2023). *Agricultural sector in Slovakia: Historical evolution, Current Status and Perspectives.*National Agricultural and Food Centre, Research Institute for Animal Production Nitra.